OBJETIVOS DE INVESTIGACIÓN
El impacto causado por el cambio climático y el aumento de la población, supone un riesgo elevado para la provisión de alimentos basados en la producción agrícola. Esta amenaza nos impulsa a estudiar la respuesta de las plantas a condiciones ambientales desfavorables, con el objetivo de incrementar la producción vegetal en un escenario adverso para la agricultura.
Nuestro objetivo general es el estudio de los mecanismos moleculares de las plantas para regular sus procesos de crecimiento, productividad y adaptación ambiental. El conocimiento generado mediante abordajes multidisciplinares como la genética, bioquímica, fisiología, biología molecular y celular principalmente con la planta modelo Arabidopsis thaliana, ayudará a descifrar los mecanismos implicados.
A nivel subcelular nos centramos en los estudios de proteostasis, es decir, la regulación de la homeostasis de las proteínas, incluyendo los procesos de síntesis, modificación, transporte y degradación. Nuestro laboratorio se centra en el estudio de cómo la proteostasis vegetal define el adecuado balance entre el crecimiento, modulado por los ejes SnRK1-TOR y/o espermidina/eIF5A, y la adaptación a múltiples condiciones de estrés tales como deficiencia nutricional, la sequía o la presencia de agentes patógenos. Dado el alto grado de conservación y relevancia de estos ejes moleculares reguladores entre los eucariotas, esperamos que los resultados obtenidos permitan descubrir principios básicos de regulación celular y, al mismo tiempo, proveer de soluciones biotecnológicas para mejorar la adaptación y tolerancia de las plantas al estrés.
PLATAFORMAS TECNOLÓGICAS. Para llevar a cabo nuestras actividades de investigación, hemos implementado tecnologías para estudios de interacciones proteicas (BiFC) y también para estudios de traducción de alta resolución (Riboseq):
– Estudios de interacciones de proteínas por BiFC (Complementación Bimolecular de Fluorescencia). Hemos diseñado y validado nuestros propios vectores para BiFC (http://www.ibmcp.upv.es/PlantStressProteostasisLabVectors) que permiten la generación de fusiones traduccionales a proteínas fluorescentes mediante tecnología de clonaje Gateway. Estos vectores permiten la visualización de interacciones proteicas in vivo en células vegetales por reconstitución de la fluorescencia.
– Estudios del traductoma mediante perfil de huella ribosomal (Riboseq). Hemos implementado la tecnología Riboseq que permite el estudio global de traducción de ARNm a nivel de sub-codón, por secuenciación masiva de fragmentos de ARNm protegidos por ribosomas.