Skip to main content
Plant Stress Proteostasis

Plant Stress Proteostasis

Research line: Response to environmental stress and climate change

Plant Stress Proteostasis

Research line: Response to environmental stress and climate change

Plant Stress Proteostasis
  • Research
  • Staff
  • Publications
  • Projects
  • Thesis

Research

RESEARCH OBJECTIVES

The impact of climate change and population growth poses a significant threat to food security based on agricultural production. This challenge drives us to study plant responses to adverse environmental conditions, with the goal of increasing plant productivity under scenarios that are increasingly unfavorable for agriculture.

Our overall objective is to study the molecular mechanisms by which plants regulate growth, productivity, and environmental adaptation. The knowledge generated through multidisciplinary approaches—including genetics, biochemistry, physiology, and molecular and cell biology—mainly using the model plant Arabidopsis thaliana, will help us uncover the mechanisms involved.

At the subcellular level, we focus on the study of proteostasis—that is, the regulation of protein homeostasis, including synthesis, modification, transport, and degradation processes. Our lab centers on the study of how plant proteostasis determines the appropriate balance between growth—modulated by the SnRK1-TOR and/or spermidine/eIF5A axes—and adaptation to multiple stress conditions such as nutrient deficiency, drought, or pathogen presence. Given the high degree of conservation and relevance of these regulatory axes among eukaryotes, we expect that our findings will uncover basic principles of cellular regulation while also providing biotechnological solutions to improve plant adaptation and stress tolerance.

TECHNOLOGICAL PLATFORMS

To carry out our research activities, we have implemented technologies for protein interaction studies (BiFC) and high-resolution translation studies (Riboseq):

– Protein interaction studies using BiFC (Bimolecular Fluorescence Complementation):
We have designed and validated our own BiFC vectors (http://www.ibmcp.upv.es/PlantStressProteostasisLabVectors) that enable translational fusions to fluorescent proteins using Gateway cloning technology. These vectors allow in vivo visualization of protein–protein interactions in plant cells through fluorescence reconstitution.

– Translational profiling through ribosome footprinting (Riboseq):
We have implemented Riboseq technology, which enables genome-wide analysis of mRNA translation at sub-codon resolution through high-throughput sequencing of ribosome-protected mRNA fragments.

Staff

Publications

  • Silva S, Vázquez-Prol F, Rodrigo I, Lisón P, Belda-Palazón B. TOR inhibition enhances autophagic flux and immune response in tomato plants against PSTVd Infection. Physiologia Plantarum 2024 Nov-Dec;176(6):e14606. https://doi.org/10.1111/ppl.14606
  • Cayuela A, Villasante-Fernández A, Corbalán-Acedo A, Baena-González E, Ferrando A, Belda-Palazón B. An Escherichia coli-based phosphorylation system for efficient screening of kinase Substrates. Int. J. Mol. Sci. 2024, 25, 3813. https://doi.org/10.3390/ijms25073813
  • Payá C, Belda-Palazón B, Vera-Sirera1 F, Pérez-Pérez J, Jordá J, Rodrigo I, Bellés JM, López-Gresa MP and Lisón P. Signaling mechanisms and agricultural applications of (Z)-3-Hexenyl Butyrate-mediated stomatal closure. Horticulture Research 2024, 11: uhad248. https://doi.org/10.1093/hr/uhad248
  • Margalha L, Elias A, Belda-Palazon B, Peixoto B, Confraria A, Baena-Gonzalez E. HOS1 promotes plant tolerance to low-energy stress via the SnRK1 protein kinase. The Plant Journal (2023) 115, 627–641. https://doi.org/10.1111/tpj.16250
  • Martínez-Férriz A., Gandía C., Pardo-Sánchez JM., Fathinajafabadi A., Ferrando A., Farràs R. 2023. Eukaryotic Initiation Factor 5A2 localizes to actively translating ribosomes to promote cancer cell protrusions and invasive capacity. Cell Communication and Signaling. doi.org/ 10.1186/s12964-023-01076-6
  • Belda-Palazon, B, Costa, M, Beeckman, T, Rolland, F, Baena-González, E. ABA represses TOR and root meristem activity through nuclear exit of the SnRK1 kinase. PNAS. July 5, 2022. 119 (28) e2204862119. https://doi.org/10.1073/pnas.2204862119
  • Belda-Palazon B, Rodríguez PL (2022). Microscopic imaging of endosomal trafficking of ABA receptor proteins. Chapter 8 in book Abscisic Acid: Methods and Protocols. Ed. Takuya Yoshida. Humana Press. Methods Mol Biol. https://doi.org/10.1007/978-1-0716-2156-1_5
  • Castellano M., Ferrando A., Geisler M., Mock HP., Muñoz A. 2022. Translation Regulation and Protein Folding. Frontiers in Plant Science 388 https://doi.org/10.3389/fpls.2022.858794
  • Santos AP.,  Belfiore C., Úrbez C., Ferrando A., Blázquez MA., Farías ME. 2022. Extremophiles as Plant Probiotics to Promote Germination and Alleviate Salt Stress in Soybean. Journal of Plant Growth Regulation, 1-14 https://doi.org/10.1007/s00344-022-10605-5.
  • Martínez-Férriz A., Ferrando A., Fathinajafabadi A., Farràs R. 2022. Ubiquitin-mediated mechanisms of translational control. Seminars in Cell & Developmental Biology. doi.org/10.1016/j.semcdb.2021.12.009.
  • Bernat-Silvestre C., Ma Y.,  Johnson K.,  Ferrando A.,  Aniento F., Marcote MJ. 2022. Characterization of Arabidopsis Post-Glycosylphosphatidylinositol Attachment to Proteins Phospholipase 3 Like Genes. Frontiers in Plant Science 64 https://doi.org/10.3389/fpls.2022.817915
  • Ferrando A., Fathinajafabadi A., Martínez-Férriz A., Farràs R. 2021. Ribosomal Pauses during Translation and Proteostasis. Chapter 1. Proteostasis and Proteolysis 1st Eds. Chondrogiani, Pick and Gioran. Taylor and Francis CRC Press ISBN 9780367499327
  • Poidevin L., Forment J., Unal D., Ferrando A. 2021. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. Plant, Cell & Environment 44, 2167-2184.
  • Rutley N., Poidevin L., Doniger T., Tillet R., Rath A., Forment J., Schlauch, K., Ferrando A., Harper, J., Miller, G. 2021. Characterization of novel pollen-expressed transcripts reveals their potential roles in pollen heat stress response in Arabidopsis thaliana. Plant Reproduction 34, 61-78.
  • Santos, AP. Muratore LN., Solé-Gil A., Farías ME., Ferrando A., Blázquez MA., Belfiore C. 2021. Extremophilic bacteria restrict the growth of Macrophomina phaseolina by combined secretion of polyamines and lytic enzymes. Biotechnology Reports 32, e00674.
  • Belda-Palazon B, Adamo M, Valerio C, Ferreira L, Confraria A, Reis-Barata D, Rodrigues A, Meyer C, Rodriguez PL, Baena-González E. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nature Plants. 2020 October 19. https://doi.org/10.1038/s41477-020-00778-w
  • Cottilli P., Belda-Palazón B., Adkar-Purushothama CR., Perreault JP., Enrico Schleiff E., Rodrigo I., Ferrando A., Lisón P. 2019. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research. 47 – 16, pp. 8649 – 8661.
  • Poidevin L., Unal D., Belda-Palazón B., Ferrando A. 2019. Polyamines as Quality Control Metabolites Operating at the Post-Transcriptional Level. Plants. 8 – 4, pp. 109
  • Ferrando A., Castellano MM., Lisón, P., Leister, D., Stepanova A., Hanson J. 2017. Editorial: Relevance of Translational Regulation on Plant Growth and Environmental Responses. Frontiers in Plant Science. doi: 10.3389/fpls.20
  • Belda-Palazón, B., Almendáriz, C., Martí, E., Carbonell, J., Ferrando, A. 2016. Relevance of the axis Spermidine/eIF5A for plant growth and development. Frontiers in Plant Science. 7 – 10.3389/fpls.2016.00
  • Li, T., Belda-Palazón, B., Ferrando, A., Alepuz, P. 2014. Fertility and Polarized Cell Growth Depends on eIF5A for Translation of Polyproline-Rich Formins in Saccharomyces cerevisiae. Genetics 197, 1191-1200.
  • Belda-Palazón, B., Nohales, M.A., Rambla, J.L., Aceña, J.L., Delgado, O., Fustero, S., Martínez, M.C., Granell, A., Carbonell, J., and Ferrando, A. 2014. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation. Frontiers in Plant Science 5. doi: 10.3389/fpls.2014.00202
  • Belda-Palazón, B., Ruiz, L., Martí, E., Tárraga, S., Tiburcio, A.F., Culianez, F., Farras, R., Carrasco, P., and Ferrando, A. 2012. Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PloS One 7(10): e46907. doi:10.1371/journal.pone.0046907

Projects

1. Phospho-regulation of SnRK1 under ABA-related stress conditions (CNS2024-154566). Funded by Ministerio de Ciencia Innovación y Universidades (MICIU, Spain). 199,200 €. Principal Investigator: Borja Belda Palazón (01/04/2025 – 31/03/2027).

2. Regulation of the plant endomembrane trafficking system by phosphorylation under stress conditions (PID2022-142412NB-I00). Funded by Ministerio de Ciencia e Innovación (MCI, Spain). 143,750 €. Principal Investigators: Borja Belda Palazón and Alejandro Ferrando Monleón (01/09/2023 – 31/08/2026).

3. Interplay between the energy master regulator SnRK1 and the phosphate starvation response in plants: new insights toward improved Pi acquisition and use efficiency (CIDEXG/2022/27). Funded by Generalitat Valenciana. 610,000 €. Principal Investigator: Borja Belda Palazón (01/11/2022-20/02/2027)

4. Developing an essential SnRK1 toolkit in tomato (EXPL/ASP-AGR/1329/2021). Funded by Portuguese Research Council (FCT). 50,000 €. Principal Investigators: Ana Isabel Confraria and Borja Belda Palazón. (01/01/2022-30/06/2023)

5. Autofagia y respuestas a estrés en plantas: posible papel de las vesículas COPII y las poliaminas. IP: Fernando Aniento. AICO/2020/187 (Universitat de València- Instituto de Biología Molecular y Celular de Plantas). 01/01/2020-31/12/2021. 40,000 €.

6. Marie Skłodowska-Curie Grant, H2020-WF-2018-2020 (H2020-WF-01-2018), Grant Agreement Number 867426. ABA-GrowthBalance: Growth balance regulation by SnRK1 under ABA-stress conditions (159,815.04 €). Funded by Horizon 2020 Framework Programme of European Union. Principal Investigators: Borja Belda Palazón and Elena Baena González (01/10/2019-04/11/2021).

7. Papel de la espermidina y de la biosíntesis de proteínas en la tolerancia del polen a las altas temperaturas. IP: Alejandro Ferrando. BIO2015-70483-R (Instituto de Biología Molecular y Celular de Plantas). 01/01/2016-31/12/2019. 140,000 €.

8. Control de la diferenciación del xilema por los factores de transcripción AJAX. Ministerio de Ciencia e Innovación. BIO2011-23828. IP: Juan Carbonell. (Instituto de Biología Molecular y Celular de Plantas). 01/01/2012-30/06/2015. 145,200 €.

9. Hipusinación del factor eIF5A y muerte celular inducida por estrés en plantas Ministerio de Ciencia e Innovación. BIO2009-11818. IP: Alejandro Ferrando. (Instituto de Biología Molecular y Celular de Plantas). 01/01/2010-31/12/2012. 113,740 €.


Thesis

Hipusinación del factor de traducción eIF5A dependiente de poliaminas
Año: 2014
Nombre: Borja Belda Palazón
Universidad: Universitat Politècnica de València
Dirigida por: Alejandro Ferrando y Ramón Serran
Tipo: Tesis Doctorales

Mecanismos de toxicidad de poliaminas: inhibición del recambio de proteínas
Año: 2014
Nombre: Enric Sayas Montañana
Universidad: Universitat Politècnica de València
Dirigida por: Ramón Serrano y Alejandro Ferrando
Tipo: Tesis Doctorales

Interacciones entre eIF5A y ACL5 en el desarrollo del xilema en Arabidopsis thaliana
Año: 2013
Nombre: Carla Almendáriz Palacios
Universidad: Máster Biotecnología Molecular y Celular de Plantas del IBMCP
Dirigida por: Alejandro Ferrando.
Tipo: Tesis de Master