DrugCrops. Drug discovery to improve drought tolerance in crops. (707477), 01-01-2017/31-12-2018
IP:Dr Pedro L Rodriguez, Dr Jorge Lozano.
Abscisic acid (ABA) plays a crucial role to integrate plant response to abiotic stress (particularly drought and salinity) into the regulation of plant growth and development. An increase in ABA levels and the subsequent plant response to the hormone are key components of the adaptive mechanism to resist/avoid those forms of abiotic stress. Accordingly, the characterization of ABA signaling offers a high biotechnological potential to improve plant tolerance to drought and salinity.
Because of its essential function in plant stress physiology, elucidating the abscisic acid (ABA) signaling pathway holds enormous promise for application in agriculture. A breakthrough in ABA signaling occurred in 2009, i.e. the discovery of the 14-member PYR/PYL/RCAR family of ABA receptors (Park et al., 2009; Ma et al., 2009; Santiago et al., 2009). Control of ABA signaling by PYR/PYL/RCAR ABA-receptors involves direct ABA-dependent inhibition of clade A phosphatases type-2C (PP2Cs), for instance, ABI1, HAB1, PP2CA, which are key negative regulators of the pathway (Saez et al., 2006; Rubio et al., 2009). Inhibition of PP2Cs leads to activation of sucrose non-fermenting 1-related subfamily 2 (SnRK2) kinases, which regulate stomatal aperture and transcriptional response to ABA. Thus, a core signaling network for ABA has emerged from these findings (Fujii et al., 2009; Cutler et al., 2010).
Agrochemicals: Crystal structures are available for ABA receptors and receptor-ABA-phosphatase complexes, which reveal key details on the mode of interaction between the receptor, the hormone, and the protein phosphatase as well as the mechanism of activation of ABA signaling. This information will be used in the structure-assisted identification of synthetic molecules able to act as agonists of ABA receptors and activate ABA signaling in plants. These molecules might have the potential to improve the yield of crop plants under drought stress or any other properties modulated by the ABA pathway in crop or ornamental plants. To this end, we will clone and produce recombinant ABA receptors in tomato, orange, grapevine, and monocots as targets for screening small molecules capable of acting as agrochemicals through the activation of ABA receptors. Additionally, through collaboration with organic chemists and protein crystallographers, direct synthesis of small molecules that fit into the ABA binding ligand pocket has been performed. Recently, we achieved the structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive response to drought, protected by the EP21382948 patent.
Molecular genetics: The ABA signaling group has played a key role in the discovery and characterization of the PYR/PYL/RCAR family of ABA receptors, and their connection with PP2Cs and SnRK2s (Rodriguez et al., 1998; Gonzalez-Guzman et al., 2002; Saez et al., 2004, 2006, 2008; Park et al., 2009; Santiago et al., 2009a, 2009b; Rubio et al., 2009; Vlad et al., 2009; Fujii et al., 2009; Cutler et al., 2010; Vlad et al., 2010; Dupeux et al., 2011a, 2011b; Antoni et al. 2012; Gonzalez-Guzman et al., 2012; Antoni et al., 2013; Merilo et al., 2013; Pizzio et al., 2013).
Some of these works are landmarks in ABA signaling and together with other results have brought about a breakthrough in our knowledge of the pathway. Later on, we provided insight into the subcellular location of ABA receptors and we discovered that C2-domain abscisic acid-related proteins mediate the interaction of PYR/PYL/RCAR receptors with the plasma membrane (Rodriguez et al., 2014; Diaz et al., 2016). Concerning ABA-induced transcriptional regulation, we have discovered a link between SWI/SNF chromatin remodeling complexes and core components of ABA signaling (Saez et al., 2008; Han et al., 2012; Peirats-Llobet et al., 2016). We have contributed several genetic strategies that enhance ABA signaling as a valuable tool for improving plant water use. Among them, the constitutive inactivation of PP2Cs (Saez et al., 2006), overexpression of monomeric ABA receptors (Santiago et al., 2009a; Gonzalez-Guzman et al., 2014), and the generation of mutated ABA receptors that enhance ABA-dependent inhibition of PP2Cs (Pizzio et al., 2013). As a result, three patents were filled to cover these findings.
We have played a pioneering role in studies that address the turnover of core ABA signaling components, particularly ABA receptors and PP2Cs (Bueso et al., 2014; Irigoyen et al., 2014; Wu et al., 2016; Belda-Palazon et al., 2016, 2018 and 2019; Fernandez et al., 2020; Coego et al., 2021). We uncovered the unique role of PYL8 in root ABA signaling, which involves a non-cell-autonomous mechanism like mobile transcription factors, ABA-induced stabilization, and predominant nuclear localization (Belda-Palazon et al., 2018). We have further studied the mechanisms that affect subcellular localization and half-life of ABA receptors. We have uncovered a novel route for endosomal degradation of ABA receptors through the ESCRT pathway (Belda-Palazón et al., 2016; Yu et al., 2016; Garcia-Leon et al., 2019) and we have identified two novel families of E3 ligases that mediate the turnover of PP2Cs (Wu et al., 2016; Belda-Palazon et al., 2019; Julian et al., 2019). Physiological studies and structural biology of crop ABA receptors are a long-lasting interest of our group (Gonzalez-Guzman et al., 2014), to elucidate the formation of receptor-ABA-phosphatase complexes (Moreno-Alvero et al., 2017) and the key role of PYL8-like receptors in crop response to abiotic stress (Garcia-Maquilon et al., 2021; Pizzio et al., 2022). International collaborations (4 publications in Nature Plants, 1 Science Advances, 1 Dev Cell) have provided key findings on the role of SnRK2s-PP2Cs-ABA receptors in root hydrotropism (Dietrich et al., 2017; Miao et al., 2021), regulation of plant growth via SnRK1 and TOR (Belda-Palazon et al., 2020), specific roles of ABA receptors in stomatal response to ABA and high CO2 (Dittrich et al., 2019) and moonlight roles of FYVE1/FREE1 in repression of ABA signaling (Li et al., 2019).
Eckardt,N.A., Avin-Wittenberg,T., Bassham,D.C., Chen,P., Chen,Q., Fang,J., Genschik,P., Ghifari,A.S., Guercio,A.M., Gibbs,D.J., Heese,M., Jarvis,R.P., Michaeli,S., Murcha,M.W., Mursalimov,S., Noir,S., Palayam,M., Peixoto,B., Rodriguez,P.L., Schaller,A., Schnittger,A., Serino,G., Shabek,N., Stintzi,A., Theodoulou,F.L., Üstün,S., van Wijk,K.J., Wei,N., Xie,Q., Yu,F. and Zhang,H. (2024). The lowdown on breakdown: Open questions in plant proteolysis.
Plant Cell 2024 Jul 9:koae193. doi: 10.1093/plcell/koae193
_____________________________________________________________________________________________________
Sanchez-Olvera, M., Martin-Vasquez, C., Mayordomo, C., Illescas-Miranda, J., Bono, M., Coego, A., Alonso, J., Hernández-González, M., Jiménez-Arias, D., Forment, J., Albert, A., Granell, A., Borges, A. A., Rodriguez, P. L* (2024). ABA-receptor agonist iSB09 decreases soil water consumption and increases tomato CO2 assimilation and water use efficiency under drought stress.
Environmental and Experimental Botany 225, 105847.https://doi.org/10.1016/j.envexpbot.2024.105847
_____________________________________________________________________________________________________
Morales-Sierra,S., Luis,J.C., Jimenez-Arias,D., Rancel-Rodriguez,N.M., Coego,A., Rodriguez,P.L., Cueto,M. and Borges,A.A. (2023). Biostimulant activity of Galaxaura rugosa seaweed extracts against water deficit stress in tomato seedlings involves activation of ABA signaling.
Front Plant Sci. 14, 1251442. doi: 10.3389/fpls.2023.1251442
_____________________________________________________________________________________________________
Jiménez-Arias D, Morales-Sierra S, Suárez E, Lozano-Juste J, Coego A, Estevez JC, Borges AA, Rodriguez PL* (2023). Abscisic acid mimic-fluorine derivative 4 (AMF4) alleviates water deficit stress by regulating ABA-responsive genes, proline accumulation, CO2 assimilation, water use efficiency and better nutrient uptake in tomato plants.
Front Plant Sci. 14:1191967. doi: 10.3389/fpls.2023.1191967
Yang C, Li X, Chen S, Liu C, Yang L, Li K, Liao J, Zheng X, Li H, Li Y, Zeng S, Zhuang X, Rodriguez PL, Luo M, Wang Y, Gao C. (2023).ABI5-FLZ13 Module Transcriptionally Represses Growth-related Genes to Delay Seed Germination in Response to ABA.
Plant Commun. 2023 Jun 9:100636. doi: 10.1016/j.xplc.2023.100636.
Lozano-Juste J, Infantes L, Garcia-Maquilon I, Ruiz-Partida R, Merilo E, Benavente JL, Velazquez-Campoy A, Coego A, Bono M, Forment J, Pampín B, Destito P, Monteiro A, Rodríguez R, Cruces J, Rodriguez PL*, Albert A* (2023). Structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive response to drought.
Sci Adv. 2023 Mar 10;9(10):eade9948. doi: 10.1126/sciadv.ade9948.
Hirt H, Al-Babili S, Almeida-Trapp M, Martin A, Aranda M, Bartels D, Bennett M, Blilou I, Boer D, Boulouis A, Bowler C, Brunel-Muguet S, Chardon F, Colcombet J, Colot V, Daszkowska-Golec A, Dinneny JR, Field B, Froehlich K, Gardener CH, Gojon A, Gomès E, Gomez-Alvarez EM, Gutierrez C, Havaux M, Hayes S, Heard E, Hodges M, Alghamdi AK, Laplaze L, Lauersen KJ, Leonhardt N, Johnson X, Jones J, Kollist H, Kopriva S, Krapp A, Masson ML, McCabe MF, Merendino L, Molina A, Moreno Ramirez JL, Mueller-Roeber B, Nicolas M, Nir I, Orduna IO, Pardo JM, Reichheld JP, Rodriguez PL, Rouached H, Saad MM, Schlögelhofer P, Singh KA, De Smet I, Stanschewski C, Stra A, Tester M, Walsh C, Weber APM, Weigel D, Wigge P, Wrzaczek M, Wulff BBH, Young IM (2023). PlantACT! – how to tackle the climate crisis.
Trends Plant Sci. 2023 28(5):537-543. doi: 10.1016/j.tplants.2023.01.005.
Chen W, Zhou H, Xu F, Yu M, Coego A, Rodriguez L, Lu Y, Xie Q, Fu Q, Chen J, Xu G, Wu D, Li X, Li X, Jaillais Y, Rodriguez PL, Zhu S, Yu F. (2023). CAR modulates plasma membrane nano-organization and immune signaling downstream of RALF1-FERONIA signaling pathway
New Phytol. 2023 Mar;237(6):2148-2162. doi: 10.1111/nph.18687
Pizzio GA, Rodriguez PL* (2022). Dual regulation of SnRK2 signaling by Raf-like MAPKKKs
Mol Plant. 2022 Aug 1;15(8):1260-1262. doi: 10.1016/j.molp.2022.07.002.
Infantes L, Rivera-Moreno M, Daniel-Mozo M, Benavente JL, Ocaña-Cuesta J, Coego A, Lozano-Juste J, Rodriguez PL, Albert A (2022). Structure-Based Modulation of the Ligand Sensitivity of a Tomato Dimeric Abscisic Acid Receptor Through a Glu to Asp Mutation in the Latch Loop.
Front Plant Sci. 2022 Jun 6;13:884029. doi: 10.3389/fpls.2022.884029. eCollection 2022.
Franco-Aragón D, García-Maquilón I, Manicardi A, Rodríguez PL, Lozano-Juste J (2022). Evaluation of the Anti-transpirant Activity of ABA Receptor Agonists in Monocot and Eudicot Plants.
Methods Mol Biol. 2022;2494:229-238. doi: 10.1007/978-1-0716-2297-1_16.
Garcia-Maquilon I, Lozano-Juste J, Alrefaei AF, Rodriguez PL* (2022). Hydrotropism: Analysis of the Root Response to a Moisture Gradient.
Methods Mol Biol. 2022;2494:17-24. doi: 10.1007/978-1-0716-2297-1_2.
Pizzio GA, Mayordomo C, Lozano-Juste J, Garcia-Carpintero V, Vazquez-Vilar M, Nebauer SG, Kaminski KP, Ivanov NV, Estevez JC, Rivera-Moreno M, Albert A, Orzaez D, Rodriguez PL* (2022). PYL1- and PYL8-like ABA Receptors of Nicotiana benthamiana Play a Key Role in ABA Response in Seed and Vegetative Tissue.
Cells. 2022 Feb 24;11(5):795. doi: 10.3390/cells11050795.
Belda-Palazón B, Rodriguez PL (2022). Microscopic Imaging of Endosomal Trafficking of ABA Receptors.
Methods Mol Biol. 2022;2462:59-69. doi: 10.1007/978-1-0716-2156-1_5
Julian J, Coego A, Alrefaei AF, Rodriguez PL* (2022). Affinity Purification of Ubiquitinated Proteins Using p62-Agarose to Assess Ubiquitination of Clade A PP2Cs.
Methods Mol Biol. 2022;2462:45-57. doi: 10.1007/978-1-0716-2156-1_4.
Miao R, Russinova E, Rodriguez PL* (2022). Tripartite hormonal regulation of plasma membrane H+-ATPase activity.
Trends Plant Sci Jun;27(6):588-600 https://doi.org/10.1016/j.tplants.2021.12.011
Coego A, Julian J, Lozano-Juste J, Pizzio GA, Alrefaei AF, Rodriguez PL* (2021). Ubiquitylation of ABA receptors and protein phosphatase 2C coreceptors to modulate ABA signaling and stress response.
Int. J. Mol. Sci 22, 7103. https://doi.org/10.3390/ijms22137103. Special Issue “Ubiquitylation in Plant Developmental and Physiological Processes”.
Zeng Y, Verstraeten I, Trinh HK, Heugebaert T, Stevens CV, Garcia-Maquilon I, Rodriguez PL, Vanneste S, Geelen D. (2021). Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling
Genes 12, 1141. https://doi.org/10.3390/genes12081141. Special Issue “Root Development and Architecture in Relation to Environmental Conditions”.
Methods Mol Biol. 2021;2213:113-121
Methods Mol Biol. 2021;2213:99-111
Science Advances 7 (12): eabd4113.
J.Exp.Bot. 72(2):757-774
Nature Plants 6(11):1345-1353
Methods Mol Biol. 2177:35-48
Trends Plant Sci. Sep;25(9):844-846.
Trends Plant Sci. Dec;25(12):1179-1182
Plant Physiol. 182(4):1723-1742
Int. J. Mol. Sci. 21, E5852
Plant J. 98(5):813-825
Plant Physiol. DOI:10.1104/pp.19.00898
Plant Cell 31(10):2411-2429
J.Exp.Bot. 70(19):5487-5494
Proc.Natl.Acad.Sci.U.S.A. 116(31):15725-15734
Nature Plants. 5(5):512-524
Nature Plants 5(9), 1002-1011.
Developmental Cell 48(1):87-99.e6
Proc.Natl.Acad.Sci. USA 115, E11857-E11863
Current Biology Oct 8;28(19):3165-3173.e5
Plant Mol. Biol. 93, 623-640.
Bioprotocols, Vol 7, 1-12
Plant J. 89, 291-309.
Nature Plants 3, 17057.
Moreno-Alvero,M., Yunta,C., Gonzalez-Guzman,M., Lozano-Juste,J., Benavente,J.L., Arbona,V., Menendez,M., Martinez-Ripoll,M., Infantes,L., Gomez-Cadenas,A., Rodriguez,P.L. and Albert,A (2017)
Mol. Plant 10, 1250-1253
Current Biology 27, 3183-3190
Molecular Plant Jan 4;9(1):136-47
Molecular Plant 9: 136-147
Boletín de la Sociedad Española de Bioquímica y Biología Molecular Junio, 188, 21-24
Diaz,M; Sanchez-Barrena,MJ; Gonzalez-Rubio,JM; Rodriguez,L; Fernandez,D; Antoni,R; Yunta,C; Belda-Palazon,B; Gonzalez-Guzman,M; Peirats-Llobet,M; Menendez,M; Boskovic,J; Marquez,J.A; Rodriguez,PL; Albert,A (2016)
Proc. Natl. Acad. Sci. U. S. A Jan 19;113(3):E396-405
Procedings of the National Academy of Sciences of the United States of America 113: E396-E405
Molecular Plant 9, 1570-1582
Proc. Natl. Acad. Sci. U. S. A pii: 201608449
Proc. Natl. Acad. Sci. U. S. A Sep 13;113(37):E5519-27
Plant Cell pii: tpc.00178.2016
Plant Cell 28:2291-2311
Boletín de la Sociedad Española de Fisiología Vegetal Julio, 63, 43-50
Methods Mol. Biol 1398: 3-9
Methods Mol. Biol. 1398, 3-9.
BMC. Plant Biol. 16, 136
BMC Plant Biology 16: 136
Plant Journal
Plant Signal. Behav. 11, e1253647
Plant Cell pii: tpc.00364.2016
Plant Cell 28:2178-2196
Proceedings of the National Academy of Sciences USA 113: E396-E405
Methods in Molecular Biology 1398: 3-9
Science Signaling 8: ra89
New Phytologist 205: 1076-1082
Trends in Plant Science 20: 330-332
Plant Science 215–216: 110–116
Plant Cell 26: 4802-4820
Proceedings of the National Academy of Sciences USA 111: 9319-9324
Plant Cell 26: 712-728
Plant Journal 80: 1057-1071
Journal of Experimental Botany 65: 4451-4464
Plant Cell 25: 3871-3874
Photosynthesis Research 117: 45-59
Plant And Cell Physiology 54: 1229-1237
Plant Physiology 162: 1652-1668
Plant Physiology 161: 931-941
Plant Physiology 163: 441-455
Plant Cell 24: 2483-2496
PLoS ONE 7: e35764
Plant Physiology 158: 970-980
Plant Science 182: 3-11
Plant Cell 24: 4892-4906
EMBO Journal 30: 4171-4184
Proceedings of the National Academy of Sciences USA 108: 5891-5896
Plant Physiology 156: 106-116
Current Opinion in Plant Biology 14: 547-553
Annual Review of Plant Biology 61: 651-679
Plant Journal 63: 778-790
Science 324: 1068-1071
Nature 462: 665-668
Plant Journal 60: 575-588
Plant Cell 21: 3170-3184
Nature 462: 660-664
Plant Physiology 149: 1917-1928
Plant Physiology 150: 1345-1355
Plant Cell 20: 2972-2988
Plant Cell & Environment 31: 227-234
Plant Physiology 148: 546-556
EMBO Journal 26: 1434-1443
Plant Physiology 140: 830-843
Plant Cell & Environment 29: 2000-2008
Plant Physiology 141: 1389-1399
Journal of Experimental Botany 56: 2071-2083
Plant Molecular Biology 57: 375-391
Plant Journal 37: 354-369
Plant Physiology 135: 325-33
Plant Physiology 133: 135-44
Journal of Biological Chemistry 278: 18945-18952
EMBO Reports 3: 116-119
Plant Cell 14: 1833-1846
Plant Molecular Biology 46: 603-614
Plant Physiology 125: 1949-1956
Journal of Biological Chemistry 274: 16034-16039
Plant Journal 17: 373-383
Plant Molecular Biology 38: 879-
Plant Molecular Biology 38: 919-927
DrugCrops. Drug discovery to improve drought tolerance in crops. (707477), 01-01-2017/31-12-2018
IP:Dr Pedro L Rodriguez, Dr Jorge Lozano.
Regulación de la señalización del ABA y tolerancia a sequía mediante E3 ubiquitín ligasas que regulan el recambio de receptores y fosfatasas 2C. BIO2017-82503-R
IP:Dr Pedro L. Rodriguez
Descubrimiento de agroquímicos para mejorar la resistencia a la sequía de plantas de cosecha. RETOS colaboración EMPRESA. RTC-2017-6019-2
Entidad financiadora:MICINN
IP: Dr Pedro L. Rodriguez
Edición de genoma y biología química para aumentar la tolerancia a sequía de los cultivos. EUROPA INVESTIGACION 2017-86741
Entidad financiadora:MICINN
Título: Respuesta a estrés abiótico mediante regulación del recambio de receptores de ABA por E3 ligasas del tipo RBR y mediante la activación de SnRK2s por MAP4Ks
Fecha inicio: 01/09/2021; Fecha final: 31/08/2025 prórroga 12 meses
“Entidad Financiadora”: Proyecto PID2020-113100RB-I00 financiado por MCIN/AEI /10.13039/501100011033
Developmental Cell 48(1):87-99.e6.
Plant J. doi10.1111/tpj.14274
Nature Plants: https://rdcu.be/bBIGF
Proc.Natl.Acad.Sci. USA 115, E11857-E11863.
Current Biology 28, 3165-3173.
Plant Journal 89, 291-309, doi: 10.1111/tpj.13383
Mol. Plant 10, 1250-1253
Current Biology 27, 3183-3190
Bioprotocols, Vol 7, 1-12, DOI:10.21769/BioProtoc.2170.
Plant Journal 89, 291-309, doi: 10.1111/tpj.13383
Boletín de la Sociedad Española de Fisiología Vegetal Julio, 63, 43-50. ISSN: 2340-8375.
Plant Cell pii: tpc.00364.2016
Boletín de la Sociedad Española de Bioquímica y Biología Molecular Junio, 188, 21-24. ISSN: 1696-473X
Molecular Plant pii: S1674-2052(16)30217-9. doi: 10.1016/j.molp.2016.09.009
Methods Mol. Biol. 1398, 3-9.
Plant Cell pii: tpc.00178.2016
DrugCrops. Drug discovery to improve drought tolerance in crops. (707477), 01-01-2017/31-12-2018
IP:Dr Pedro L Rodriguez, Dr Jorge Lozano.
Regulación de la señalización del ABA y tolerancia a sequía mediante E3 ubiquitín ligasas que regulan el recambio de receptores y fosfatasas 2C. BIO2017-82503-R
IP:Dr Pedro L. Rodriguez
Descubrimiento de agroquímicos para mejorar la resistencia a la sequía de plantas de cosecha. RETOS colaboración EMPRESA. RTC-2017-6019-2
Entidad financiadora:MICINN
IP: Dr Pedro L. Rodriguez
Edición de genoma y biología química para aumentar la tolerancia a sequía de los cultivos. EUROPA INVESTIGACION 2017-86741
Entidad financiadora:MICINN
Título: Respuesta a estrés abiótico mediante regulación del recambio de receptores de ABA por E3 ligasas del tipo RBR y mediante la activación de SnRK2s por MAP4Ks
Fecha inicio: 01/09/2021; Fecha final: 31/08/2025 prórroga 12 meses
“Entidad Financiadora”: Proyecto PID2020-113100RB-I00 financiado por MCIN/AEI /10.13039/501100011033
S A. Sáez, R. Serrano y P.L. Rodríguez (p.o. de firma):
S. Rubio y P.L. Rodríguez (p.o. de firma)
Tipo:Tesis Doctorales
Tipo:Tesis Doctorales
Tipo:Tesis Doctorales
Tipo:Tesis Doctorales
Tipo:Tesis Doctorales
Tipo:Tesis Doctorales
Tipo:Tesis Doctorales
Tipo:Tesis de Master
Tipo:Tesis de Master