– Nacido en Sevilla (08/07/1963).
– Lienciatura (1987) y posteriormente Doctorado (1990) en Ciencias Químicas por la Universidad de Sevilla cursando la tesis Doctoral (Becario PFPI Junta de Andalucía) en el Departamento de Bioquímica Vegetal y Biología Molecular trabajando en asimilación fotosintética de azufre inorgánico y biosíntesis de cisteína en algas verdes eucarióticas.
– Becario (1989) del Biotechnology Action Programme (B.A.P.) CEE, Dept. Biotechnology, South Bank Polytechnic of London (Reino Unido) trabajando en inmovilización de biocatalizadores.
– Estancia posdoctoral (1992-1995) en AgBiotech Center, Rutgers University, New Brunswick (NJ, U.S.A.) contratado como Postdoctoral Research Associate (Rutgers Univ. 1992 y 1995) y como Becario Postdoctoral del MEC (1993-1994) trabajando en biosíntesis y modo de acción del ácido salicílico en la interacción entre tabaco y el virus del mosaico del tabaco.
– Contratado Postdoctoral de Reincorporación MEC, Centro Nacional de Biotecnología, Madrid (España) (Septiembre1995-Agosto 1998) trabajando en la biosíntesis de jasmonatos y regulación de la respuesta a herida de Arabidopsis thaliana.
– Beca Postdoctoral con cargo a la Universidad Pública de Navarra (Septiembre 1998 – Abril 1999) producción de jasmonatos en plantas de patata.
– Colaborador Científico del CSIC, Instituto de Biología Molecular y Celular de Plantas, Valencia (España) (19 de Abril 1999 – 29 de Mayo de 2008) trabajando en la caracterización de la función de la beta-oxidación de ácidos grasos y de los peroxisomas en respuestas de plantas de Arabidopsis frente a estrés.
– Investigador Científico del CSIC, Instituto de Biología Molecular y Celular de Plantas, Valencia (España) (desde 30 de Mayo de 2008 a la actualidad) trabajando en la biosíntesis y modo de acción del óxido nítrico (NO) en Arabidopsis, y en la caracterización de modificaciones postraduccionales dependientes de NO en la interacción funcional con hormonas.
Last 20 years:
– Gayubas B, Castillo MC, Ramos S, León J. (2023) Enhanced meristem development, tolerance to oxidative stress and hyposensitivity to nitric oxide in the hypermorphic vq10-H mutant in AtVQ10 gene. Plant Cell & Environment 46:3445-3463. (Impact factor 7,947)
– Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC (2023) Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. Journal of Experimental Botany 74(19):5970-5988. (Impact factor 6,992)
– De Brasi-Velasco S, Sánchez-Guerrero A, Castillo MC, Vertommen D, León J, Sevilla F, Jiménez A (2023) Thioredoxin TRXo1 is involved in ABA perception via PYR1 redox regulation. Redox Biology 63:102750. (Impact Factor 10.787)
– León J (2022) Protein Tyrosine Nitration in Plant Nitric Oxide Signaling. Frontiers in Plant Science 13: 859374. (Impact factor 5,753)
– Romero M, Peláez-Vico MA, Pazmiño D, Rodríguez-Serrano M, Terrón-Camero LC, Bautista R, Gómez-Cadenas A, Claros MG, León J, Sandalio LM (2021) Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. Plant, Cell & Environment 45(2): 572-590. (Impact factor 7,228)
– Castillo MC, Costa-Broseta A, Gayubas B, León J (2021) NIN-like Protein7 and PROTELYSIS6 Functional Interaction Enhances Tolerance to Sucrose, ABA, and Submergence. Plant Physiology 187(4): 2731-2748. (Impact factor 8,972)
– León J, Castillo MC, Gayubas B (2021) The hypoxia-reoxygenation stress in plants. Journal of Experimental Botany 72(16): 5841–5856. (Impact factor 6,992)
– León J, Gayubas B, Castillo MC (2021) Valine-Glutamine Proteins in Plant Responses to Oxygen and Nitric Oxide. Frontiers in Plant Science 11: 632678. (Impact factor 5,753)
– Costa-Broseta Á, Castillo MC, León J (2021) Post-Translational Modifications of Nitrate Reductases Autoregulates Nitric Oxide Biosynthesis in Arabidopsis. International Journal of Molecular Sciences, 22(2), 549. (Impact factor 5,923)
– Costa-Broseta Á, Castillo MC, León J (2020) Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis. International Journal of Molecular Sciences 21, 7270. (Impact factor 5,923)
– León J, Costa-Broseta Á, Castillo MC (2020) RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis Journal of Experimental Botany 71(10):3157-3171. (Impact factor 5,354)
– León J, Costa-Broseta Á (2020) Present knowledge and controversies, deficiencies and misconceptions on nitric oxide synthesis, sensing and signaling in plants. Plant Cell & Environment 43: 1-15. (Impact factor 6,362)
– Costa-Broseta Á, Perea-Resa C, Castillo MC, Ruíz MF, Salinas J, León J (2019) Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. Journal of Experimental Botany 70:3283-3296. (Impact factor 5,354)
– Castillo MC, Coego A, Costa-Broseta Á, León J (2018) Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany 69: 5265-5278. (Impact factor 5,354)
– Costa-Broseta A, Perea-Resa C, Castillo MC, Ruíz MF, Salinas J, José León (2018) Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Scientific Reports 8(1):9268. (Impact factor 4,259)
– León J, Costa A, Castillo MC (2016) Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports 6, 37945 (Impact factor 5,228)
– Belda-Palazon B, Rodriguez L, Lorenzo-Orts L, Fernandez MA, Castillo MC, Anderson EM, Gao C, Gonzalez-Guzman M, Zhao Q, De Winne N, Gevaert K, de Jaeger G, Jiang L, León J, Mullen RT, Rodriguez PL (2016) The ESCRT component FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway. The Plant Cell 28: 2291-2311. (Impact factor 9,338)
– Castillo MC, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J (2015) Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signal. 8 (392), ra89. (Impact factor 6,279)
– Abbas M, Berckhan S, Rooney D, Gibbs DJ, Vicente Conde J, Sousa Correia C, Bassel GW, Marín-de la Rosa N, Leon J, Alabadi D, Blazquez MA, Holdsworth MJ (2015) Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival. Current Biol. 25(11):1483-1488. (Impact factor 9,916)
– Coego A, Brizuela E, Castillejo P, Ruíz S, Koncz C, Del Pozo JC, Piñeiro M, Jarillo JA, Paz-Ares J, León J; The TRANSPLANTA Consortium (2014) The TRANSPLANTA Collection of Arabidopsis Lines: A resource for Functional Analysis of Transcription Factors based on their conditional overexpression. Plant J.. 77: 944–953. (Impact factor 6,582)
– León J, Castillo MC, Coego A, Lozano-Juste J, Mir R (2014) Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. J. Exp. Bot. 65:907-921. (Impact factor 5,242)
– Gibbs DJ, Isa NM, Mohavedi M, Lozano-Juste J, Mendiondo GM, Berckham S, Marín-dela Rosa N, Vicente-Conde J, Sousa-Correia C, Pearce S, Bassel GW, Hamali B, Talloji P, Tomé DFA, Coego A, Beynon J, Alabadí D, Bachmair A, León J, Gray JE, Theodoulou FL, Holdsworth MJ (2014) Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Molecular Cell 53: 369-379. (Impact factor 15,280)
– Lozano-Juste J, Colom-Moreno R, León J (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J. Exp. Bot. 62: 3501-3517. (Impact factor 5,364)
– Petó A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L, Kolbert Z (2011) Involvement of nitric oxide (NO) and auxin in signal transduction of copper induced morphological responses in Arabidopsis seedlings. Annals of Botany 108(3):449-457. (Impact factor 4,030)
– L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou Mansour E, Balet F, Schoonbeek H-J, Hess S, Mir R, Léon J, Lamotte O, Métraux J-P (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathogens 7(7): e1002148. (Impact factor 9,127)
– Lozano-Juste J, Leon J (2011) Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis. Plant Physiology 156: 1410-1423. (Impact factor 6,535)
– Alvarez C, Lozano-Juste J, Romero LC, García I, Gotor C, León J (2011) Inhibition Of Arabidopsis O-Acetylserine(Thiol)Lyase A1 By Tyrosine-Nitration. J. Biol. Chem. 286: 578-586. (Impact factor 4,773)
– Lozano-Juste J, León J (2010) Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-mediated nitric oxide biosíntesis in Arabidopsis. Plant Physiol. 152: 891-903. (Impact factor 6,451)
– March-Diaz R, García-Domínguez M, Lozano-Juste J, Leon J, Florencio FJ, Reyes JC (2008) Histone H2A.Z and homologs of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J. 53, 475-487. (Impact factor 6,493)
– Castillo MC, Martínez C, Buchala A, Métraux JP, León J (2004) Gene-specific involvement of b-oxidation in wound-activated responses in Arabidopsis thaliana. Plant Physiol. 135, 85-94. (Impact factor 5,881)
– Martínez C, Pons E, Prats G, León J (2004) Salicylic acid regulates flowering time and links defense responses and reproductive development. Plant J. 37, 209-217. (Impact factor 6,367)