In most eukaryotes, gene expression can be suppressed through the sequence-specific degradation of target RNA by complementary small RNAs (sRNAs), a process termed RNA interference (RNAi). Recent RNAi tools are based on sRNAs that are designed to silence specific plant genes and pathogens. Such sRNAs are named artificial sRNAs (art-sRNAs) which are typically 21-nt long and computationally designed to silence target RNA with high efficacy and specificity.
Our lab seeks to develop next-generation art-sRNAi tools for controlling gene expression and inducing antiviral resistance in plants.
We have the following specific goals:
(i) Optimizing art-sRNAi efficacy, fine-tunability and systemicity for absolute control of plant gene expression.
(ii) Developing efficient GMO-free art-sRNAi through the cost-efficient production and topical delivery of art-sRNA precursors to plants, and to use viral vectors or by editing endogenous sRNA precursors to express art-sRNAs.
(iii) Applying these optimized methodologies to improve real crops.
Adriana E. Cisneros, Tamara Martín-García, Anamarija Primc, Wojtek Kuziuta, Javier Sánchez-Vicente Verónica Aragonés, José-Antonio Daròs, Alberto Carbonell* (2023). Transgene-free virus-based gene silencing in plant by artificial microRNAs derived from minimal precursors. Nucleic Acids Research 51 (19): 10719–10736.
Adriana E. Cisneros, Purificación Lisón, Laura Campos, Joan Manel López-Tubau, Teresa Altabella, Albert Ferrer, José-Antonio Daròs, Alberto Carbonell* (2023). Down-regulation of Tomato STEROL GLYCOSYLTRANSFERASE 1 Perturbs Plant Development and Facilitates Viroid Infection. Journal of Experimental Botany 74 (5): 1564-1578.
Francesco Di Serio, Robert A. Owens, Beatriz Navarro, Pedro Serra, Ángel Emilio Martínez de Alba, Sonia Delgado, Alberto Carbonell, Selma Gago-Zachert (2023). Role of RNA silencing in plant-viroid interaction and in viroid pathogenesis. Virus Research 323. 198964.
María-Carmen Marqués, Javier Sánchez-Vicente, Raúl Ruiz, Roser Montagud-Martínez, Rosa Márquez-Costa, Gustavo Gómez, Alberto Carbonell, José-Antonio Daròs*, Guillermo Rodrigo* (2022). Diagnostics of plant viral infections with CRISPR-Cas12a and CRISPR-Cas13d. ACS Synthetic Biology 11 (7): 2384-2393.
Adriana E. Cisneros, Ainhoa de la Torre-Montaña, Alberto Carbonell* (2022). Systemic silencing of an endogenous plant gene by two classes of mobile 21-nucleotide artificial small RNAs. The Plant Journal 110 (4): 1166-1181.
Lucio López-Dolz, Maria Spada, José-Antonio Daròs and Alberto Carbonell* (2022). Fine-tune control of plant gene expression by synthetic trans-acting small interfering RNAs. In: Plant Gene Silencing: Methods and Protocols (Eds. Kirankumar Mysore and Muthappa Senthil-Kumar). Methods in Molecular Biology 2408: 227-242. Springer Protocols series, Humana Press, NY, USA. ISBN: 978-1-0716-1875-2.
Alberto Carbonell* (2022). RNAi tools for controlling viroid diseases. Virus Research 198729.
Vicente Pallás, Carmen Hernández, Jose Francisco Marcos, José-Antonio Daròs, Beatriz Navarro, José Antonio Navarro, Marcos de la Peña, Selma Gago-Zachert, María Eugenia Gas, Alberto Carbonell, Carmelo López, Ángel Emilio Martínez de Alba, Francesco Di Serio, Pedro Moreno (2022). In memoriam of Ricardo Flores: the career, achievements, and legacy of an inspirational plant virologist. Virus Research 198718.
Vicente Pallás Benet, Alberto Carbonell, Miguel Aranda, Blanca Landa del Castillo, Carlos López Herrera, Enrique Moriones Alonso, Juan A. Navas Cortés, Félix Ortego Alonso, Rafael Zas Arregui (2021). Plant health. Resistance to pests and diseases. In: Sustainable primary production (Eds. Enrique Olmos Aranda, Mónica Venegas Calerón), vol. 6: 85-105. CSIC Scientific Challenges: Towards 2030. Editorial CSIC. ISBN: 978-84-00-10748-2.
Adriana E. Cisneros, Ainhoa De la Torre-Montaña, Tamara Martín-García, Alberto Carbonell* (2021). Artificial small RNAs for functional genomics in plants. In: RNA-based technologies for functional genomics in plants (Eds. Guiliang Tang, Sachin Teotia, Xiaoqing Tang, Deepali Singh). Concepts and Strategies in Plant Sciences 16076: 1-29. Springer Nature. eBook ISBN: 978-3-030-64994-4.
Minglei Yang, Hugh Woolfenden, Yueying Zhang, Xiaofeng Fang, Qi Liu, Maria Louisa Vigh, Jitender Cheema, Xiaofei Yang, Matthew Norris, Sha Yu, Hang Zhang, Alberto Carbonell, Peter Brodersen, Jiawei Wang, Caroline Dean, Yiliang Ding* (2020). RNA structure-dependent activation of endonuclease RISC promotes miRNA cleavage in vivo. Nucleic Acids Research 48 (15): 8767-8781.
Adriana E. Cisneros and Alberto Carbonell* (2020). Art-sRNAi for enhanced antiviral resistance in plants. Encyclopedia (ISSN: ISSN 2309-3366): https://encyclopedia.pub/1870
Lucio López-Dolz, Maria Spada, José-Antonio Daròs, Alberto Carbonell* (2020). Fine-tune control of targeted RNAi efficacy by plant artificial small RNAs. Nucleic Acids Research 48 (11): 6234-6250.
Adriana E. Cisneros and Alberto Carbonell* (2020). Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants. Plants 9 (6): 669.
Pedro Serra, Alberto Carbonell, Beatriz Navarro, Selma Gago-Zachert, Shifang Li, Francesco Di Serio*, Ricardo Flores* (2020). Symptomatic plant viroid infections in phytopathogenic fungi: a request for a critical reassessment. Proceedings of the National Academy of Science 117 (19): 10126-10128.
Carbonell, A.*, Purificación Lisón and Daròs, J.A. (2019). Multi-targeting of viral RNAs with synthetic trans-acting small interfering RNAs enhances plant antiviral resistance. The Plant Journal 100: 720-737.
Cervera-Seco, L., Marqués, M.C., Sanz-Carbonell, A., Márquez-Molins, J., Carbonell, A., Daròs, J.A. and Gómez, G. (2019) Identification and characterization of a stress-responsive TAS3-derived tasiRNA in melon. Plant and Cell Physiology 60 (11): 2382-2393.
Carbonell, A.* and Daròs, J.A. (2019). Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs With Antiviral Activity in Plants. In: Antiviral Resistance in Plants: Methods and Protocols (Eds. Kappei Kobayashi and Masamichi Nishiguchi). Methods in Molecular Biology 2028: 231-246.
Carbonell, A.* (2019). Secondary small interfering RNA-based silencing tools in plants: an update. Frontiers in Plant Science 10: 687.
Carbonell, A.* (2019). Design and high-throughput generation of artificial small RNA constructs for plants. In: Plant MicroRNAs: Methods and Protocols (Ed. Stephan de Folter). Methods in Molecular Biology 1932: 247-260.
Línea 1: Pequeños RNAs Artificiales: RNAi de Última Generación Para la Mejora de Cultivos (art-sRNAi).
Entidad Financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia PID2021-122186OB-100. 01/09/2022-31/08/2025.
IP: Alberto Carbonell.
———————————————————————————————————————————————————————————–
Línea 2: Vacunas para la protección de cultivos frente a virus basadas en vectores virales que expresan pequeños ARNs artificiales (art-vacs)
Entidad Financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia CNS2-135107-100. 01/09/2023-31/08/2025.
IP: Alberto Carbonell.
———————————————————————————————————————————————————————————–
Línea 3: Optimización de la productividad de cultivos mediante la modulación fina del grado de silenciamiento inducido por pequeños RNAs artificiales
Entidad Financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia PDC2022-133241-I00. 01/12/2022-30/11/2024.
IP: Alberto Carbonell.
———————————————————————————————————————————————————————————–
Línea 4: RNA-based regulation of gene expression and antiviral resistance in plants
Entidad financiadora: MICIU (AEI)/Cofinanciación FEDER. Ayuda Ramón y Cajal. Referencia RYC-2017-21648. 16/01/2019-15/01/2024.
IP: Alberto Carbonell
———————————————————————————————————————————————————————————–
Línea 5: AmiRNAs para elucidar las funciones desconocidas de genes que codifican proteínas pequeñas relacionadas con estrés ambiental
Entidad financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia TED2021-13069OB-100. 01/12/2022-30/11/2024.
IP: José León.
Línea 1: Pequeños RNAs Artificiales: RNAi de Última Generación Para la Mejora de Cultivos (art-sRNAi).
Entidad Financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia PID2021-122186OB-100. 01/09/2022-31/08/2025.
IP: Alberto Carbonell.
———————————————————————————————————————————————————————————–
Línea 2: Vacunas para la protección de cultivos frente a virus basadas en vectores virales que expresan pequeños ARNs artificiales (art-vacs)
Entidad Financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia CNS2-135107-100. 01/09/2023-31/08/2025.
IP: Alberto Carbonell.
———————————————————————————————————————————————————————————–
Línea 3: Optimización de la productividad de cultivos mediante la modulación fina del grado de silenciamiento inducido por pequeños RNAs artificiales
Entidad Financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia PDC2022-133241-I00. 01/12/2022-30/11/2024.
IP: Alberto Carbonell.
———————————————————————————————————————————————————————————–
Línea 4: RNA-based regulation of gene expression and antiviral resistance in plants
Entidad financiadora: MICIU (AEI)/Cofinanciación FEDER. Ayuda Ramón y Cajal. Referencia RYC-2017-21648. 16/01/2019-15/01/2024.
IP: Alberto Carbonell
———————————————————————————————————————————————————————————–
Línea 5: AmiRNAs para elucidar las funciones desconocidas de genes que codifican proteínas pequeñas relacionadas con estrés ambiental
Entidad financiadora: MICIU (AEI)/Cofinanciación FEDER. Referencia TED2021-13069OB-100. 01/12/2022-30/11/2024.
IP: José León.
“Minimal microRNA precursors” (EP23382794.8): patent pending. Filed on 28/07/2023.
“Minimal precursors of syn-tasiRNAs” (EP23382795.5): patent pending. Filed on 28/07/2023.
‘Method for Modulating the Gene Silencing Degree Induced by Trans-acting Small Interfering RNAs (EP19382445.5). Filed on 31/05/2019.
‘New Generation of Artificial MicroRNAs (PCT/US15/18529). Filed on 04/03/2015.
TESIS EN CURSO
Doctorando: Adriana E. González Cisneros
Doctorando: Juan José Llorens Gámez
Doctorando: María Juárez Molina